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Abstract

An analysis of combined forced and free convection in a vertical parallel-plate channel with prescribed wall heat
¯uxes is performed by considering a fully developed ¯ow and by taking into account the e�ect of viscous

dissipation. It is shown that the condition of fully developed ¯ow cannot be accomplished if a streamwise change of
the wall heat ¯uxes occurs. An analytical solution of the momentum balance and energy balance equations is found
by a perturbation method. In particular, the forced convection ¯ow with viscous heating is treated as the base heat
transfer process. Then, the e�ect of buoyancy is accounted for by expressing the ¯uid velocity and temperature as

power series with respect to the ratio between the Grashof number and the Reynolds number. # 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

In recent literature, most of the interest devoted to
mixed convection in vertical ducts is due to the appli-

cations which range from the ®eld of electronic devices
to that of solar energy collectors. Several papers on
this subject refer to parallel plate channels and deal
either with the fully developed region or with the

developing ¯ow region [1±12]. The mathematical
models described in these papers refer to three kinds of
thermal boundary conditions: (a) prescribed uniform

temperatures on both walls, which can be either equal
or di�erent; (b) prescribed uniform temperature on one
of the walls and prescribed uniform heat ¯ux on the

other wall; and (c) prescribed uniform heat ¯uxes on

both walls.
For laminar ¯ow, in the fully developed region, i.e.

in the region so far from the channel entrance that the

¯uid velocity does not undergo appreciable changes in
the streamwise direction, the boundary conditions (a)
and (b) can be considered as special cases of the more
general boundary condition (c). More precisely, if vis-

cous dissipation is negligible, the boundary conditions
(a) and (b) correspond, on both channel walls, to uni-
form heat ¯uxes such that their absolute values are

equal but the signs are opposite. As a consequence, if
boundary conditions (a) and (b) are adopted, no heat
transfer occurs in the streamwise direction, while

boundary condition (c) implies, in general, a stream-
wise change of the ¯uid temperature.
Yao [1] obtains an analytical solution of the devel-

oping ¯ow heat transfer in a vertical channel with sym-

metric and uniform wall temperatures or with
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symmetric and uniform wall heat ¯uxes. Aung and

Worku [2,4] analyze the developing ¯ow region for
asymmetric wall temperatures or asymmetric wall heat

¯uxes by employing a ®nite-di�erence method. Aung

and Worku [3] perform an investigation of the fully
developed ¯ow in the case of asymmetric and uniform

Nomenclature

a, b dimensionless constants employed in Eq. (47)
Br =mU 2

0/(4Lqÿ), Brinkman number
cp speci®c heat at constant pressure [J/(kg K)]

fÿ, f+ Fanning friction factors de®ned by Eq. (23)
g gravitational acceleration [m/s2]
Gr =64gbDTL 3/n 2, Grashof number

j non-negative integer
k thermal conductivity [W/(m K)]
L channel half-width [m]

n non-negative integer
Nuÿ,
Nu+

Nusselt numbers de®ned by Eq. (25)

p pressure [Pa]

P =p+r0gX, di�erence between the pressure and the hydrostatic pressure [Pa]
qÿ, q+ prescribed heat ¯uxes at Y=ÿL and at Y=L, respectively [W/m2]
rc radius of convergence of the perturbation series

R =q+/qÿ, ratio between the wall heat ¯uxes
Re =4LU0/n, Reynolds number
T temperature [K]

T0 mean temperature de®ned by Eq. (2) [K]
u =U/U0, dimensionless velocity component in the X-direction [m/s]
un( y ) dimensionless functions de®ned by Eq. (26)

U velocity component in the X-direction [m/s]
U velocity [m/s]
U0 mean velocity de®ned by Eq. (11) [m/s]
V velocity component in the Y-direction [m/s]

X streamwise coordinate [m]
Y transverse coordinate [m]
y =Y/L, dimensionless transverse coordinate

y ', y0 dummy integration variables

Greek symbols
b thermal expansion coe�cient [Kÿ1]
DT � mU 2

0=k, reference temperature di�erence [K]

Z dimensionless parameter de®ned by Eq. (15)
Zn dimensionless parameters de®ned by Eq. (29)
y =(TÿT0)/DT, dimensionless temperature

yn ( y ) dimensionless functions de®ned by Eq. (27)
l =ÿ[L 2/(mU0)] dP/dX, dimensionless pressure-drop parameter
ln dimensionless parameters de®ned by Eq. (28)

m dynamic viscosity [Pa s]
n =m/r0, kinematic viscosity [m2/s]
r mass density [kg/m3]
r0 mass density evaluated at T=T0 [kg/m

3]

w dimensionless parameter de®ned by Eq. (56)

Superscript
ÿ modi®ed dimensionless quantities de®ned by Eq. (48)
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wall temperatures and point out the conditions for the
occurrence of ¯ow reversal. Lavine [5,8] is concerned

with fully developed combined convection in inclined
parallel-plate channels and regards vertical channels as
a special case. Either the evaluation of laminar velocity

and temperature pro®les [5] and the analysis of the
stability of the laminar solution [8] are studied. Cheng
et al. [6] and Hamadah and Wirtz [7] analyze the fully

developed region and the ¯ow reversal for the bound-
ary conditions (a), (b) and (c). Chen and Chung [9,10]
investigate the linear stability of the fully developed

laminar solutions, either in the case of symmetric and
uniform wall heat ¯uxes [9] or in the case of asym-
metric and uniform wall temperatures [10]. Indeed, the
results described in Refs. [1±10] are based on the

assumption that the e�ect of viscous dissipation can be
neglected.
Recently, Barletta [11] and Zanchini [12] have pre-

sented analyses on the fully developed combined con-
vection in a vertical channel by taking into account the
e�ect of viscous dissipation. Both the case of pre-

scribed wall temperatures [11] and the case of bound-
ary conditions of the third kind [12] are treated. In
these papers, the evaluation of the velocity and tem-

perature pro®les is performed by means of a pertur-
bation method. More precisely, for any ®xed value of
the ratio between the Grashof number and the
Reynolds number, the solution of the momentum and

energy balance equations is expressed as a power series
with respect to a dimensionless parameter proportional
to the Brinkman number. As is well known [13], the

Brinkman number accounts for the relevance of vis-
cous heating.
The aim of the present paper is to study the fully

developed combined forced and free convection in a
vertical channel by taking into account the e�ect of
viscous dissipation in the case of prescribed wall heat
¯uxes. As pointed out above, in this case, the tempera-

ture ®eld depends on the streamwise coordinate even
in the fully developed region. In the following, it will
be pointed out that no parallel ¯ow solution can exist

if the prescribed heat ¯uxes on the channel walls are
not uniform. Then, the momentum and energy balance
equations are solved by a perturbation method such

that the forced convection ¯ow is considered as the
base heat transfer process and the e�ect of buoyancy is
evaluated by means of power series expansions with

respect to the ratio between the Grashof number and
the Reynolds number.

2. Problem statement and theoretical approach

The problem under consideration is that of laminar
and fully developed ¯ow between two vertical parallel
planes. The distance between the planes is 2L. The

problem is two-dimensional and a Cartesian coordi-
nate system is chosen such that the transverse coordi-

nate is Y and the coordinate in the direction parallel
to the planes is X. The origin of the axes is such that
the channel walls are at positions Y=ÿL and Y=L.

The X-axis has a direction opposite to the gravitational
acceleration. The Boussinesq approximation is
assumed to hold and, for the evaluation of the gravi-

tational body force, the mass density is assumed to
depend on temperature according to the equation of
state

r � r0�1ÿ b�Tÿ T0��: �1�

In Eq. (1), the reference temperature is chosen as the

mean temperature in a channel section, i.e.

T0 � 1

2L

�L
ÿL

T dY: �2�

At each channel section, this choice ensures that the

averaged square deviation from the local temperature
is minimum. As a consequence, Eq. (2) yields the best
conditions for the validity of Eq. (1). However, it

should be pointed out that T0 evaluated through Eq.
(2) is, in general, a function of X. Then, also r0 should
be considered as a function of X and not as a constant.
In the following, the approximation stated by Morton

[14] in a study on mixed convection in vertical circular
ducts will be adopted. Morton's approximation is as
follows. If the reference temperature depends on the

streamwise coordinate, the value of the reference mass
density r0 as well as those of the other thermophysical
properties b, k, cp and m should be referred to a ®xed

value of the reference temperature T0 as, for instance,
that at X=0. Hence, the properties r0, b, k, cp and m
are treated as constants.
The condition of fully developed ¯ow implies that

@U/@X=0. Then, since the velocity ®eld U is solen-
oidal, one obtains @V/@Y=0. As a consequence, the
component V is constant in any channel section and is

equal to zero at the channel walls, so that V must be
vanishing at any position. The Y-momentum balance
equation can be expressed as @P/@Y=0. Therefore, P

depends only on X and the X-momentum balance
equation is given by

bg�Tÿ T0� ÿ 1

r0

dP

dX
� n

d2U

dY 2
� 0: �3�

If both sides of Eq. (3) are derived with respect to Y,
one obtains

@T

@Y
� ÿ n

bg
d3U

dY 3
: �4�

Eq. (4) implies that @T/@Y must be independent of X.

A. Barletta / Int. J. Heat Mass Transfer 42 (1999) 3873±3885 3875



This condition must hold also at the channel walls,
where the prescribed heat ¯uxes are expressed as

ÿk@T/@Y. As a consequence, one is led to the follow-
ing outcome:

. prescribed wall heat ¯ux distributions which depend
on the streamwise coordinate X are not compatible
with the condition of fully developed ¯ow.

It should be pointed out that this conclusion is not
based on the choice of the reference temperature given

by Eq. (2). Indeed, the same conclusion is reached for
every choice of a reference temperature which depends
at most on X. In the following, it will be assumed that
the prescribed wall heat ¯uxes are uniform. On

account of the properties of second order derivatives,
if @T/@Y is independent of X, then @T/@X must be inde-
pendent of Y. Then, on account of Eq. (2), one

obtains

@T

@X
� dT0

dX
: �5�

By employing Eq. (5), it is easily veri®ed that the
dimensionless temperature y=k(TÿT0)/(mU

2
0) does not

depend on the streamwise coordinate X.

By deriving both sides of Eq. (3) with respect to X,
one obtains

@T

@X
� dT0

dX
� 1

r0bg
d2P

dX 2
: �6�

A comparison between Eqs. (5) and (6), leads to the

conclusion that dP/dX is a constant.
On account of Eq. (5), the energy balance equation

can be written as

k
@ 2T

@Y 2
� m

�
dU

dY

�2

� r0cpU
dT0

dX
ÿ k

d2T0

dX 2
: �7�

Since @T/@Y is independent of X, if both sides of Eq.
(7) are derived with respect to X, one obtains

r0cpU
d2T0

dX 2
ÿ k

d3T0

dX 3
� 0: �8�

A further derivation of both sides of Eq. (8) with
respect to Y, yields

r0cp
dU

dY

d2T0

dX 2
� 0: �9�

Eq. (9) could be satis®ed if dU/dY were zero in the
whole interval ÿL R Y R L. However, on account of
the no slip boundary conditions on the ¯uid velocity,

it is easily veri®ed that this condition cannot hold
unless the ¯uid is at rest. As a consequence, Eq. (9)
can be ful®lled only if dT0/dX is a constant. Then, on

account of Eq. (5), one is led to the following con-
clusion:

. prescribed wall temperature distributions which
depend on the streamwise coordinate X and have

non-vanishing second order derivatives with respect
to X are not compatible with the condition of fully
developed ¯ow.

Since dT0/dX is a constant, the energy balance
expressed by Eq. (7) is simpli®ed and assumes the

form

k
@ 2T

@Y 2
� m

�
dU

dY

�2

� r0cpU
dT0

dX
: �10�

The mean velocity in a channel section is de®ned as

U0 � 1

2L

�L
ÿL

U dY: �11�

An integration of both sides of Eq. (10) with respect to
Y in the interval [ÿL, L ] yields

k
@T

@Y

����
Y�L
ÿk@T

@Y

����
Y�ÿL
�m
�L
ÿL

�
dU

dY

�2

dY

� 2Lr0cpU0
dT0

dX
: �12�

The boundary conditions on the temperature ®eld are
given by

ÿk @T
@Y

����
Y�ÿL
� qÿ, k

@T

@Y

����
Y�L
� q�, �13�

so that Eq. (12) can be rewritten as

qÿ � q� � m
�L
ÿL

�
dU

dY

�2

dY � 2Lr0cpU0
dT0

dX
: �14�

By de®ning the dimensionless parameter

Z � 4L

mU 2
0

"
qÿ � q� � m

�L
ÿL

�
dU

dY

�2

dY

#
, �15�

Eq. (14) can be rewritten as

dT0

dX
� nU0

8L2cp

Z: �16�

On account of Eqs. (15) and (16), the special case Z=0
implies that dT0/dX=0 and, as a consequence of Eq.
(5), implies also that @T/@X=0. Then, if Z=0, one

recovers a condition of uniform wall temperatures. If
viscous dissipation is negligible, this condition is
achieved for qÿ=ÿq+. Otherwise, the sum qÿ+q+
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must balance the power per unit boundary area gener-
ated by viscous dissipation within the channel.

Substitution of Eq. (16) in Eq. (10) yields

k
@ 2T

@Y 2
� m

�
dU

dY

�2

� mU0

8L2
ZU: �17�

Eqs. (3) and (17) can be expressed in terms of dimen-
sionless quantities as follows:

d2u

dy2
� ÿ Gr

16Re
yÿ l, �18�

d2y
dy2
� ÿ

�
du

dy

�2

�Z
8
u :�19�

Moreover, the no slip boundary conditions and the
thermal boundary conditions given by Eq. (13) can be

expressed as

u�ÿ1� � u�1� � 0, �20�

dy
dy

����
y�ÿ1
� ÿ 1

4Br
,

dy
dy

����
y�1
� R

4Br
: �21�

Additional constraints on the dimensionless functions
u( y ) and y( y ) are induced by Eqs. (2) and (11), i.e.�1
ÿ1

u� y� dy � 2,

�1
ÿ1

y� y� dy � 0: �22�

For any given value of R, Br and Gr/Re, Eqs. (18)±
(22) yield the dimensionless velocity pro®le, the dimen-

sionless temperature pro®le and the values of the par-
ameters l and Z.
The special case of adiabatic walls is obtained by

taking the limits Br41 and Br/R41 in Eq. (21).
The Fanning friction factors can be expressed as

fÿRe � 8L

U0

dU

dY

����
Y�ÿL
� 8

du

dy

����
y�ÿ1

,

f�Re � ÿ8L
U0

dU

dY

����
Y�L
� ÿ8du

dy

����
y�1
: �23�

On account of Eqs. (22) and (23), by integrating both

sides of Eq. (18) with respect to y in the interval [ÿ1,
1], one obtains

fÿ � f� � 16l
Re

: �24�

Eq. (24) expresses the relation between the Fanning

friction factors fÿ, f+ and the pressure drop parameter
l.
The Nusselt numbers are de®ned by considering as

characteristic temperature di�erence the di�erence
between the wall temperature and the mean tempera-

ture across a channel section, T0, namely

Nuÿ � 4Lqÿ
k�T�ÿL� ÿ T0� �

1

Bry�ÿ1� ,

Nu� � 4Lq�
k�T�L� ÿ T0� �

R

Bry�1� : �25�

Although the bulk temperature is more customary in

the de®nition of the Nusselt number, the mean tem-
perature is sometimes convenient, as in this case. The
same choice of the characteristic temperature di�erence

for the de®nition of the Nusselt number has been
made, for instance, by Morton [14].

3. Perturbation series solution

If the dimensionless parameters R and Br are ®xed,
the functions u( y ) and y( y ) which solve Eqs. (18)±
(22) as well as the parameters l and Z can be expressed

as power series with respect to the ratio Gr/Re, i.e.

u� y� � u0� y� � u1� y�Gr
Re
� u2� y�

�
Gr

Re

�2

� � � �

�
X1
n�0

un� y�
�
Gr

Re

�n

,

�26�

y� y� � y0� y� � y1� y�Gr
Re
� y2� y�

�
Gr

Re

�2

� � � �

�
X1
n�0

yn� y�
�
Gr

Re

�n

,

�27�

l � l0 � l1
Gr

Re
� l2

�
Gr

Re

�2

� � � � �
X1
n�0

ln

�
Gr

Re

�n

, �28�

Z � Z0 � Z1
Gr

Re
� Z2

�
Gr

Re

�2

� � � � �
X1
n�0

Zn

�
Gr

Re

�n

: �29�

An exhaustive description of perturbation methods

in heat transfer can be found in ref. [15]. A brief
outline of the perturbation method can be given as
follows. One substitutes Eqs. (26)±(29) into Eqs.

(18)±(22) and collects terms having like powers of
the ratio Gr/Re. Then, one equates to zero the coef-
®cient of each power of Gr/Re, thus obtaining a

sequence of boundary value problems. The iterative
solution of these di�erential problems allows one to
evaluate the functions un( y ), yn ( y ) and the dimen-
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sionless coe�cients ln and Zn. The boundary value
problem of order n=0 is the following:

d2u0
dy2
� ÿl0, u0�ÿ1� � u0�1� � 0,

�1
ÿ1

u0� y�dy � 2,

�31�

d2y0
dy2
� ÿ

�
du0
dy

�2

�Z0
8
u0,

dy0
dy

����
y�ÿ1
� ÿ 1

4Br
,

dy0
dy

����
y�1
� R

4Br
,

�1
ÿ1

y0� y� dy � 0:

�32�

The solution of Eq. (31) allows one to determine u0( y )
and l0, namely

u0� y� � 3

2
�1ÿ y2�, l0 � 3: �33�

On account of Eq. (33), also Eq. (32) can be easily
solved and yields

y0� y� � ÿ 1

64Br

�
�72Br� R� 1�y4 ÿ 6�24Br� R� 1�y2

ÿ 8�Rÿ 1�y� 3

5
�3� 56Br� 3R�

�
,

Z0 � 24� R� 1

Br
: �34�

Obviously, Eqs. (33) and (34) describe the ¯uid ¯ow
and heat transfer behavior in the special case of forced

convection, i.e. in the limit Gr 4 0. In particular, Eq.
(33) yields the usual Hagen±Poiseuille velocity pro®le,
and, by employing Eq. (23), one is led to the usual

result

fÿRe � 24 � f�Re: �35�

Eqs. (25) and (34) yield the Nusselt numbers in the
case of forced convection, i.e.

Nuÿ � 40

24Brÿ 3R� 7
, Nu� � 40R

24Br� 7Rÿ 3
: �36�

Eq. (36) allows one to conclude that Nuÿ is singular
for Br=(3Rÿ7)/24 and is positive for Br>(3Rÿ7)/24.
On the other hand, Nu+ is singular for Br=(3ÿ7R )/
24 and is positive for Br/R>(3ÿ7R )/(24R ). Obviously,
the singularity of Nuÿ corresponds to a value of Br

which yields T(ÿL )=T0, while the singularity of Nu+
occurs for a value of Br such that T(L )=T0.

The boundary value problem which corresponds to
an arbitrary n>0 can be expressed as

d2un
dy2
� ÿynÿ1

16
ÿ ln,

un�ÿ1� � un�1� � 0,

�1
ÿ1

un� y� dy � 0, �37�

d2yn
dy2
� ÿ

Xn
j�0

�
duj
dy

dunÿj
dy
ÿ Zj

8
unÿj

�
,

dyn
dy

����
y�ÿ1
� 0 � dyn

dy

����
y�1

,

�1
ÿ1

yn� y� dy � 0: �38�

By solving Eq. (37), one obtains expressions of un( y )
and ln, namely

un� y� � ln
2
�1ÿ y2� � 1� y

32

�1
ÿ1

dy0
� y0

0

dy 0ynÿ1� y 0�

ÿ 1

16

� y

ÿ1
dy0
� y0

0

dy 0ynÿ1� y 0�,

ln � 3

32

"�1
ÿ1

dy

� y

ÿ1
dy0

� y0

0

dy 0ynÿ1� y 0�

ÿ
�1
ÿ1

dy0
� y0

0

dy 0ynÿ1� y 0�
#
:

�39�

If ynÿ1( y ) is known, Eq. (39) yields un( y ) and ln. On

account of Eq. (38), one is led to the following ex-
pressions of yn ( y ) and Zn:

yn� y� � 1

2

Xn
j�0

�1
ÿ1

dy

� y

0

dy0
� y0

ÿ1
dy 0

�
�

duj� y 0�
dy 0

dunÿj� y 0�
dy 0

ÿ Zj
8
unÿj� y 0�

�

ÿ
Xn
j�0

� y

0

dy0
� y0

ÿ1
dy 0

�
�

duj� y 0�
dy 0

dunÿj� y 0�
dy 0

ÿ Zj
8
unÿj� y 0�

�
,

Zn � 4
Xn
j�0

�1
ÿ1

duj� y 0�
dy 0

dunÿj� y 0�
dy 0

dy 0: �40�
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If the functions uj( y ) are known for every j such that 0 R j R n and the parameters Zj are known for every j such
that 0R jR nÿ1, Eq. (40) allows one to obtain yn ( y ) and Zn.
In particular, by the perturbation method described above, one can easily evaluate the lowest order corrections to

the forced convection values of the parameters l, Z, fÿ, f+, Nuÿ and Nu+, namely

l � 3� 3�16Br� R� 1�
4480Br

Gr

Re
, �41�

Z � 24� R� 1

Br
� 11,232Br2 � 1236Br�R� 1� � 708R2 ÿ 1279R� 708

62,092,800Br2

�
Gr

Re

�2

, �42�

fÿRe � 24� 72Brÿ 13R� 22

840Br

Gr

Re
, �43�

f�Re � 24� 72Br� 22Rÿ 13

840Br

Gr

Re
, �44�

1

Nuÿ
� 24Brÿ 3R� 7

40
� 8640Br2 ÿ 48Br�149Rÿ 166� � �R� 1��101Rÿ 109�

4,838,400Br

Gr

Re
, �45�

1

Nu�
� 24Br� 7Rÿ 3

40R
� 8640Br2 � 48Br�166Rÿ 149� ÿ �R� 1��109Rÿ 101�

4,838,400RBr

Gr

Re
: �46�

4. Symmetric wall heat ¯uxes

In this section, a special case is examined, i.e. the

case qÿ=q+, which implies R=1. This value of R
leads to temperature and velocity pro®les which are
symmetric with respect to the plane Y=0. As a conse-
quence, Nuÿ=Nu+ and, on account of Eq. (24),

fÿRe=f+Re=8l.
The evaluations of u( y ), y( y ), l and Z have been

performed by employing perturbation series truncated

to the ®rst 41 terms. When a perturbation method is
employed, it is quite important to know if the pertur-
bation series have a ®nite radius of convergence rc. It

is easily checked that, for a ®xed value of Br, all the
perturbation series expressed by Eqs. (26)±(29) have
the same radius of convergence and that this radius of
convergence is ®nite. Several methods can be employed

to evaluate the real positive number rc such that the
perturbation series given by Eqs. (26)±(29) are conver-
gent for vGr/Rev < rc. The most commonly adopted

method is based on the estimation of D'Alembert's
ratio limit by means of Domb±Sykes plots [15]. In the
present paper, a di�erent method is employed. In the

following, in order to illustrate this method, reference
will be made to the perturbation series expressed by

Table 1

Symmetric case: radius of convergence rc of the perturbation

series for some values of Br

Br rc

ÿ1 220

ÿ1 230

ÿ1/6 270

ÿ1/10 390

ÿ10ÿ3 8.20

10ÿ3 6.90

1/10 160

1/6 200

1 220

+1 220

Eq. (28). First, one recognizes that, for su�ciently

high values of n, say in the interval 20 R n R 40, the
coe�cients log10vlnv represent approximately a linearly
decreasing function of n. Then, by a least-squares ®t,

one evaluates the constant a and the positive constant
b such that

log10 j ln j� aÿ bn: �47�
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It is easily veri®ed that rc310b is an estimate of the
radius of convergence. The values of b and, hence, of

rc depend on the choice of Br. In Table 1, values of rc
are reported for various values of Br. This table shows
that, for vBrv r 1/10, the radius of convergence is an

increasing function of Br. Although in Table 1 the
cases Br=1 and Br=ÿ1 are distinguished for con-
venience, they are mathematically and physically equiv-

alent since they correspond to a channel with adiabatic
walls.
The perturbation series solution for small values of

Br can be compared with the solution of the boundary
value problem in the limit Br4 0, i.e. in the limit of a
negligible viscous dissipation. In order to perform this
limit, one can introduce the modi®ed dimensionless

quantities

�y � Bry � k
Tÿ T0

4Lqÿ
, Gr � Gr

Br
� 256L4gbqÿ

kn2
,

�Z � BrZ � 2� 4Br

�1
ÿ1

�
du

dy

�2

dy: �48�

On account of Eq. (48), Eqs. (18)±(22) for R=1 can

be rewritten as

d2u

dy2
� ÿ Gr

16Re
�y ÿ l, �49�

d2 �y
dy2
� ÿBr

�
du

dy

�2

� �Z
8
u, �50�

u�ÿ1� � u�1� � 0,
d�y
dy

�����
y�ÿ1
� ÿ1

4
,

d�y
dy

�����
y�1
� 1

4
, �51�

�1
ÿ1

u� y� dy � 2,

�1
ÿ1

�y � y� dy � 0: �52�

It is easily veri®ed that, in the limit Br4 0, Z=2 and
Eqs. (49)±(52) yield

d4u

dy4
� ÿ Gr

64Re
u, �53�

u�ÿ1� � u�1� � 0,
d3u

dy3

�����
y�ÿ1
� Gr

64Re
,

d3u

dy3

�����
y�1
� ÿ Gr

64Re
,

�54�

�y � ÿ16Re
Gr

 
d2u

dy2
� l

!
,

l � 1

2

 
du

dy

����
y�ÿ1
ÿdu

dy

����
y�1

!
: �55�

Let us de®ne a parameter w such that

w4 � ÿ Gr

64Re
: �56�

As is well known [9], the solution of Eqs. (53) and (54)
can be expressed as

u� y� � w�cosh w cos�wy� ÿ cos w cosh�wy��
sin w cosh wÿ cos w sinh w

, �57�

while Eq. (55) yields

�y � cosh w sin w� cos w sinh wÿ w�cosh w cos�wy� � cos w cosh�wy��
4w2�sin w cosh wÿ cos w sinh w� ,

l � w2�cosh w sin w� cos w sinh w�
sin w cosh wÿ cos w sinh w

: �58�

Eqs. (57) and (58) can be employed both in the case

Gr/Re < 0 (buoyancy-opposed ¯ow) and in the case
Gr/Re>0 (buoyancy-assisted ¯ow). In the former case,
w is a real parameter, while, in the latter case, w is a
complex parameter. As is shown by Eqs. (56)±(58), the

solution of Eqs. (49)±(52) in the limit Br 4 0 is
uniquely determined by the value of Gr/Re. Therefore,
on account of Eq. (48), one expects that the solution

for a small value of Br, say 10ÿ3, and a given ratio Gr/
Re is similar to the solution which corresponds to
Br=ÿ10ÿ3 and ÿGr/Re. In any case, both solutions

should not be much di�erent from that expressed by
Eqs. (57) and (58). This inference can be the basis for
a comparison between the perturbation method
described in the preceding section and the solution for

the case Br4 0 expressed through Eqs. (57) and (58).
Indeed, in Table 2, the values of Nu+ and l obtained
for Br=10ÿ3 and for Br=ÿ10ÿ3 by employing the

perturbation method are compared with the values of
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these quantities obtained for Br=0 by means of Eqs.
(25), (48) and (58). As it should be expected, each

value of l or Nu+ for Br=0 lies in the interval
between the corresponding values for Br=10ÿ3 and
for Br=ÿ10ÿ3. Moreover, both for l and for Nu+,

the di�erences between the cases Br=0, Br=10ÿ3 and
Br=ÿ10ÿ3 become more relevant as vGr/Rev increases.
It is easily veri®ed that, in the case Br=0, the

closed-form solution expressed by Eqs. (57) and (58)

presents singularities for the positive real values of w
which solve the equation

sin w cosh wÿ cos w sinh w � 0: �59�

Since reference is made to the positive real roots of
Eq. (59), the case Gr/Re < 0, i.e. buoyancy-opposed
¯ow, is considered. On account of Eqs. (56) and (59),

an in®nite sequence of values of Gr/Re which corre-
spond to singularities of both u( y ), y( y ) and l exists,
namely Gr/Re=ÿ15,214.1, ÿ159,775, ÿ695,525, . . .

The occurrence of this sequence of singularities means
that for Gr/Re=ÿ15,214.1, ÿ159,775, ÿ695,525, . . .
no solutions of Eqs. (53)±(55) exist. An almost identi-

cal circumstance has been analyzed by Morton [14]

with reference to the velocity and temperature pro®les
in the case of a vertical circular cylinder with a pre-
scribed uniform wall heat ¯ux. In that case, the singu-

larities were evaluated by means of the positive real
zeros of the Bessel function of the ®rst kind and order

zero. By applying Morton's viewpoint to the velocity
and temperature pro®les expressed by Eqs. (57) and

(58), one can state that, if Gr/Re < ÿ15,214.1, `there
are theoretically possible ¯ows . . . which are rather
unlikely to be found in practice'. Indeed, for the buoy-

ancy-opposed regime, conceivable laminar ¯ows are
those such that ÿ15,214.1 < Gr/Re < 0. However, it

should be emphasized that stability analyses may yield
further restrictions of this domain [9].

From a di�erent perspective, it can be pointed out
that the velocity and temperature pro®les de®ned by

Eqs. (57) and (58) are analytic functions of the variable
Gr/Re in the open interval vGr/Rev < 15,214.1. Thus,
these functions can be expressed as power series with

respect to Gr/Re and these series are convergent for
vGr/Rev < 15,214.1. On the other hand, Table 1 shows

that, for Br=10ÿ3 and for Br=ÿ10ÿ3, power series ex-
pressions of the velocity and temperature pro®les with

respect Gr/Re to would be convergent only for vGr/Rev
<6900 and for vGr/Rev<8200, respectively. As a con-
sequence, the domain of convergence of a power series

solution is reduced if the viscous dissipation e�ect is
taken into account, even if the Brinkman number is

very small. In particular, the more relevant reduction
of the convergence domain occurs if the ¯uid is heated
(Br=10ÿ3).

Table 2

Symmetric case: values of Nu+ and l for Br=210ÿ3, evalu-
ated by the perturbation method, and for Br=0, evaluated by

Eqs. (25), (48), (57) and (58)

Br=10ÿ3

perturbation

method

Br=ÿ10ÿ3
perturbation

method

Br=0 closed-

form solution

Gr/Re Nu+ l Nu+ l Nu+ l

ÿ5500 7.376 ÿ8.470 8.125 ÿ7.042 7.805 ÿ7.621
ÿ5000 7.762 ÿ6.727 8.274 ÿ5.890 8.042 ÿ6.256
ÿ4500 8.084 ÿ5.271 8.435 ÿ4.778 8.271 ÿ5.005
ÿ4000 8.365 ÿ4.004 8.606 ÿ3.713 8.490 ÿ3.851
ÿ3500 8.617 ÿ2.872 8.784 ÿ2.699 8.702 ÿ2.783
ÿ3000 8.847 ÿ1.843 8.966 ÿ1.739 8.907 ÿ1.790
ÿ2500 9.058 ÿ0.8964 9.151 ÿ0.8316 9.104 ÿ0.8638
ÿ2000 9.255 ÿ0.01743 9.336 0.02492 9.295 0.003791

ÿ1500 9.441 0.8045 9.520 0.8332 9.480 0.8188

ÿ1000 9.616 1.577 9.703 1.596 9.659 1.587

ÿ500 9.782 2.308 9.883 2.317 9.832 2.313

0 9.940 3.000 10.06 3.000 10.00 3.000

500 10.09 3.659 10.23 3.647 10.16 3.653

1000 10.24 4.287 10.41 4.262 10.32 4.274

1500 10.38 4.888 10.57 4.846 10.47 4.867

2000 10.51 5.464 10.74 5.403 10.62 5.434

2500 10.64 6.017 10.90 5.936 10.77 5.976

3000 10.77 6.549 11.05 6.445 10.91 6.497

3500 10.89 7.062 11.20 6.933 11.05 6.997

4000 11.01 7.556 11.35 7.401 11.18 7.478

4500 11.12 8.034 11.50 7.852 11.31 7.942

5000 11.24 8.496 11.64 8.285 11.44 8.389

5500 11.34 8.944 11.78 8.704 11.56 8.822

Table 3

Symmetric case: values of Nu+ and l for Br=21/6

Br=1/6 Br=ÿ1/6

Gr/Re Nu+ l Nu+ l

ÿ150 5.988 0.4175 84.27 2.757

ÿ130 5.973 0.7928 93.65 2.775

ÿ110 5.904 1.138 106.5 2.797

ÿ90 5.796 1.468 125.0 2.822

ÿ70 5.659 1.795 154.1 2.852

ÿ50 5.497 2.124 206.5 2.887

ÿ30 5.313 2.462 328.7 2.928

ÿ10 5.109 2.816 939.7 2.974

0 5.000 3.000 1 3.000

10 4.886 3.191 ÿ893.0 3.028

30 4.644 3.596 ÿ282.0 3.090

50 4.382 4.042 ÿ159.7 3.161

70 4.101 4.541 ÿ107.1 3.243

90 3.799 5.114 ÿ77.86 3.339

110 3.478 5.787 ÿ59.13 3.452

130 3.139 6.595 ÿ46.05 3.587

150 2.791 7.580 ÿ36.33 3.750
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In Table 3, values of Nu+ and l are reported for
Br=2 1/6 and for some values of Gr/Re. This table

shows that, for Br=21/6, l is an increasing function
of Gr/Re. On the other hand, Nu+is a decreasing func-
tion of Gr/Re when Br=1/6, while it is an increasing

function for Br=ÿ1/6. In the case Br=ÿ1/6, Table 3
yields an in®nite value of Nu+ for Gr/Re=0. This
result is easily deduced from Eq. (36), in the case

R=1. The singularity of Nu+ is no more present
whenever Gr/Re$0. More precisely, for upward ¯ow
(Gr/Re>0), Nu+ is negative since T(L )>T0 while, for

downward ¯ow (Gr/Re < 0), Nu+ is positive since
T(L ) < T0. Table 3 shows that, as Gr/Re is increased,
l increases more in the case of ¯uid heating (Br>0)
than in the case of ¯uid cooling (Br<0).

Table 4 refers to the cases Br=21 as well as to the
case of adiabatic channel walls, i.e. Br= 2 1.
Obviously, the values of Nu+ are not reported for

Br=21, since in this case they are zero for every
value of Gr/Re. The values of l for Br=21 lie within
those for Br=1 and those for Br=ÿ1. The di�erences

between these values are more and more considerable
as vGr/Rev increases. The values of Nu+ for Br=ÿ1
are negative, because q+ is negative, but the viscous

heating is so intense that T(L )>T0.
Fig. 1 corresponds to Gr/Re=1080 and displays the

dimensionless velocity and temperature pro®les for
some values of Br. In particular, the plots of u and y
for Br=0 have been obtained by employing Eqs. (57)

and (58). Since Fig. 1 refers to a positive value of Gr/
Re, the plots for Br=1/10 and Br=1/6 correspond to
¯uid heating and upward ¯ow, while the plots for

Br=ÿ1/10 and Br=ÿ1/6 correspond to ¯uid cooling
and downward ¯ow. Indeed, Fig. 1 shows that, for
positive values of Br, the e�ect of an increasing viscous

dissipation is an increase of the dimensionless ¯uid vel-
ocity next to the channel walls. On the contrary, for
negative values of Br, this ®gure shows that an
increase of the viscous heating yields a decrease of the

dimensionless ¯uid velocity next to the channel walls.
Fig. 1 reveals that the dimensionless temperature at
y=21 is an increasing function of Br. Moreover, the

temperature pro®les for Br>0 are less uniform than in
the case Br=0. For Br=ÿ1/10 and Br=ÿ1/6, the sign
of d2y/dy 2 at y=0 becomes negative. Since the sym-

metry implies that du/dy is zero at y=0, Eq. (50)
allows one to conclude that a negative value of d2y/
dy 2 at y=0 corresponds to Zu(0) < 0. Fig. 1 ensures
that u(0) is positive for every Br, so that Z must be

negative. Indeed, on account of Eqs. (15) and (48), the
condition Z < 0 is accomplished for negative Br, pro-
vided that the power generated by viscous dissipation

within the channel exceeds the power subtracted at the
channel walls.
Fig. 2 refers to Gr/Re=ÿ1080 and displays the dis-

tributions of u and y for some values of Br. In this

Fig. 1. Symmetric case: plots of u and y vs y for Gr/Re=1080

and for (a) Br=ÿ1/6, (b) Br=ÿ1/10, (c) Br=0, (d) Br=1/10,

(e) Br=1/6.

Table 4

Symmetric case: values of Nu+ for Br=21 and of l for Br=

21 and for Br=21

Br=1 Br=ÿ1 Br=21

Gr/Re Nu+ l Nu+ l l

ÿ180 2.069 1.294 ÿ3.233 1.755 1.531

ÿ160 2.007 1.460 ÿ3.086 1.864 1.667

ÿ140 1.942 1.628 ÿ2.942 1.978 1.806

ÿ120 1.874 1.799 ÿ2.801 2.098 1.950

ÿ100 1.804 1.975 ÿ2.663 2.224 2.101

ÿ80 1.733 2.159 ÿ2.526 2.359 2.259

ÿ60 1.659 2.350 ÿ2.392 2.502 2.426

ÿ40 1.584 2.553 ÿ2.261 2.655 2.604

ÿ20 1.507 2.768 ÿ2.130 2.820 2.794

0 1.429 3.000 ÿ2.000 3.000 3.000

20 1.348 3.252 ÿ1.871 3.197 3.224

40 1.265 3.529 ÿ1.743 3.414 3.472

60 1.180 3.838 ÿ1.614 3.658 3.748

80 1.092 4.189 ÿ1.485 3.934 4.062

100 1.001 4.597 ÿ1.354 4.255 4.426

120 0.9054 5.082 ÿ1.220 4.635 4.859

140 0.8060 5.677 ÿ1.083 5.101 5.390

160 0.7027 6.435 ÿ0.9416 5.694 6.067

180 0.5977 7.428 ÿ0.7957 6.486 6.965
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®gure, the plots for Br=1/10 and Br=1/6 correspond

to ¯uid heating and downward ¯ow, while the plots
for Br=ÿ1/10 and Br=ÿ1/6 correspond to ¯uid cool-
ing and upward ¯ow. Fig. 2 shows that, for positive

values of Br, an increasing viscous dissipation yields a
decrease of the dimensionless ¯uid velocity next to the
channel walls. The reverse occurs for negative values

of Br. The same ®gure shows that the dimensionless
temperature at y=21 is an increasing function of Br.
Moreover, this ®gure reveals that, for negative values
of Br, the derivative d2y/dy 2 is negative at y=0. The

sign of this derivative has the meaning explained in the
case of Fig. 1.
Fig. 3 refers to a channel with adiabatic walls. In

this case, Br=21 and the heat transfer within the
¯uid is due only to viscous heating. The plots of u and
y reported in this ®gure correspond to di�erent values

of the ratio Gr/Re. More precisely, for positive values
of Gr/Re, upward ¯ow occurs and both u and y in the
neighborhood of the channel walls are increased with

respect to the case of forced convection. On the con-
trary, for negative values of Gr/Re, downward ¯ow
occurs and, in the neighborhood of the channel walls,
a decrease of both u and y with respect to the case of

forced convection is observed.

5. Asymmetric wall heat ¯uxes

In order to inspect the behavior of the velocity and
temperature pro®les for asymmetric wall heat ¯uxes
(R $ 1), reference is made to Br=1/2 and two test

cases are considered: R=1/2 and R=ÿ1/2. The former
case corresponds to ¯uid heating at both walls, while
the latter case corresponds to ¯uid heating at the wall

Y=ÿL and ¯uid cooling at the wall Y=L. The evalu-
ations are made by employing the perturbation series
expressed by Eqs. (26)±(29) truncated to the ®rst 31

terms. By applying the method described in the preced-
ing section, the radius of convergence is estimated.
One obtains rc360 for R=1/2 and rc355 for R=ÿ1/2.
Figs. 4 and 5 refer to R=1/2 and R=ÿ1/2, respect-

ively. Both these ®gures reveal that the asymmetry of
the velocity pro®les is more evident for positive values
of Gr/Re (upward ¯ow) than for negative values of

this parameter (downward ¯ow). Moreover, an analy-
sis of the velocity and temperature pro®les allows one
to conclude that the e�ect of buoyancy is more con-

siderable for upward ¯ow than for downward ¯ow. In
the case of upward ¯ow, the dimensionless velocity
gradient du/dy increases with buoyancy in the neigh-

borhood of y=ÿ1 and slightly decreases next to the
other wall. As a consequence, both the viscous heating
and the ¯uid temperature are increased by buoyancy in

Fig. 3. Symmetric case: plots of u and y vs y for Br=21
and for (a) Gr/Re=ÿ200, (b) Gr/Re=0, (c) Gr/Re=120, (d)

Gr/Re=200.

Fig. 2. Symmetric case: plots of u and y vs y for and for Gr/

Re=ÿ1080 and for (a) Br=ÿ1/6, (b) Br=ÿ1/10, (c) Br=0,

(d) Br=1/10, (e) Br=1/6.
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the region next to y=ÿ1, while the opposite occurs
next to y=1. The main di�erence between the be-
haviors for R=1/2 and R=ÿ1/2 is that, in the ®rst

case, the temperature values at Y=L are greater than
T0, while, in the second case, the temperature values at
the cooled wall for Gr/Re=50 are smaller than T0.

Indeed, Fig. 5 shows that for R=ÿ1/2 there exists a
positive value of Gr/Re such that T(L )=T0, i.e. a
value of Gr/Re which corresponds to a singularity of

Nu+. This value is approximately equal to 35.5.

6. Conclusions

Laminar mixed convection in a vertical parallel-plate
channel with prescribed wall heat ¯uxes has been ana-
lyzed in the fully developed regime by taking into

account the e�ect of viscous dissipation. The
Boussinesq approximation has been adopted by
employing the mean temperature in a channel section

as the reference temperature. Morton's approximation
has been used to neglect the streamwise changes of the
¯uid properties. According to this mathematical

model, it has been shown that:

1. the condition of fully developed ¯ow is not compat-

ible with changes of the wall heat ¯ux distributions

in the streamwise direction;
2. the condition of fully developed ¯ow is not compati-

ble with wall temperature distributions which can-
not be expressed as linear functions of the

streamwise coordinate.

The momentum balance and the energy balance

equations have been solved by employing a pertur-
bation method based on power series expansions with

respect to the ratio between the Grashof number and
the Reynolds number, Gr/Re. Indeed, according to the

perturbation method, the forced convection ¯ow has
been considered as the base heat transfer process and

corrections of this base process of order (Gr/Re )n have
been evaluated for every positive integer n. The radius

of convergence of the perturbation series has been esti-
mated and has been shown to depend on the

Brinkman number Br and on the heat ¯uxes ratio R.

A special attention has been devoted to the case of
symmetric wall heat ¯uxes (R=1). In this case, a com-

parison has been performed between the perturbation
solution with small values of Br and the closed-form

solution obtained in the case of a negligible viscous
dissipation. It has been pointed out that, even for
vBrv=10ÿ3, the e�ect of viscous dissipation is not negli-
gible especially for high values of Gr/Re. The Nusselt

Fig. 5. Asymmetric case: plots of u and y vs y for Br=1/2

and R=ÿ1/2. The dashed lines refer to Gr/Re=0, while the

solid lines refer to (a) Gr/Re=50 and to (b) Gr/Re=ÿ50, re-
spectively.

Fig. 4. Asymmetric case: plots of u and y vs y for Br=1/2

and R=1/2. The dashed lines refer to Gr/Re=0, while the

solid lines refer to (a) Gr/Re=50 and to (b) Gr/Re=ÿ50, re-
spectively.
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number and the pressure drop parameter have been
evaluated as functions of Gr/Re for some values of Br.

The e�ect of viscous dissipation on the behavior of the
velocity and temperature pro®les has been illustrated.
In the case of an in®nite Brinkman number, i.e. in the

case of a channel with adiabatic walls, the velocity and
temperature pro®les have been analyzed for some
values of the ratio Gr/Re. It has been shown that the

e�ect of viscous dissipation is almost dominant for vBrv
i1. Indeed, the values of the pressure drop parameter
for vBrv=1 are similar to those for vBrv=1.

The case of asymmetric wall heat ¯uxes has been
investigated for Br=1/2 with either R=1/2 or R=
ÿ1/2. It has been pointed out that, for R=ÿ1/2,
there exists a positive value of Gr/Re which yields a

temperature on the cooled wall equal to the mean
temperature and, as a consequence, an in®nite Nusselt
number on the cooled wall.
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